Vol. 2 Núm. 2 (2020): Diciembre
Neurociencia y Ejercicio

The influence of the intervention time on the motor learning process induced through movement representation techniques: a randomized controlled pilot trial

Publicado diciembre 28, 2020

 Palabras clave

  • Action observation; Motor imagery; Motor learning; Time influence; Imagery ability

  Cómo citar

1.
de la Hera Robledo N, Castro Puerta M, Cuenca Martínez F, La Touche R. The influence of the intervention time on the motor learning process induced through movement representation techniques: a randomized controlled pilot trial. MOVE [Internet]. 28 de diciembre de 2020 [citado 16 de enero de 2021];2(2). Disponible en: https://jomts.com/index.php/MOVE/article/view/30

  Estadísticas

Descargas

La descarga de datos todavía no está disponible.

##plugins.generic.paperbuzz.metrics##

Cargando métricas ...

Resumen

Objective: The main aim was to assess motor learning process comparing action observation (AO), motor imagery (MI), and double time of MI (2MI) at post- and at 1-week post-intervention through Purdue-Pegboard test. The secondary objectives were to assess if improvements enhanced the ability to imagine and the perceived fatigue.

Methods: 20 healthy subjects were randomly assigned to AO group, MI group, 2MI group or placebo observation group.

Results: Results in right hand test showed that AO group obtained improvements at post- and at 1-week post-intervention, both with a large effect size (p = .049, d = -1.28 and p = .049, d = -1.4). In left hand test MI group obtained better results than placebo group (p = .016, d = 2.21). In both hand test MI presented differences at the post- and at 1-week post-intervention (p = .006, d = -2.28 and p = .009, d = -1.89). No within- and between-group differences were found in sequence test. With respect to the perceived fatigue, both MI and 2MI showed greater levels of fatigue (p = .003, and p = .045). Finally, no within- and between-group differences were found in the ability to imagine (p > .05).

Conclusions: Both movement representation techniques enhanced motor learning, although the results must be considered with caution due to the small sample size. MI seems to cause more fatigue than AO. However, increasing imagery time did not results in greater level of fatigue. The improvements did not lead to an increase in the ability to imagine.


  Referencias

  1. Boksem MAS, Meijman TF, Lorist MM. Effects of mental fatigue on attention: An ERP study. Cogn Brain Res. 2005;25(1):107–16 DOI: http://dx.doi.org/10.1016/j.cogbrainres.2005.04.011.
  2. Bovend’eerdt TJH, Dawes H, Sackley C, Wade DT. Practical research-based guidance for motor imagery practice in neurorehabilitation. Disabil Rehabil. 2012;34(25):2192–200 DOI: http://dx.doi.org/10.3109/09638288.2012.676703.
  3. Bray H, Moseley GL. Disrupted working body schema of the trunk in people with back pain. Br J Sports Med. 2011;45(3):168–73 DOI: http://dx.doi.org/10.1136/bjsm.2009.061978.
  4. Buccino G. Action observation treatment: a novel tool in neurorehabilitation. Philos Trans R Soc B Biol Sci. 2014;369(1644):20130185–20130185 DOI: http://dx.doi.org/10.1098/rstb.2013.0185.
  5. Buccino G, Arisi D, Gough P, Aprile D, Ferri C, Serotti L, TIBERTI A, FAZZI E. Improving upper limb motor functions through action observation treatment: a pilot study in children with cerebral palsy. Dev Med Child Neurol. 2012;54(9):822–8 DOI: http://dx.doi.org/10.1111/j.1469-8749.2012.04334.x.
  6. Caliari P. Enhancing forehand acquisition in table tennis: The role of mental practice. J Appl Sport Psychol. Taylor & Francis Group ; 2008;20(1):88–96 DOI: http://dx.doi.org/10.1080/10413200701790533.
  7. Callow N, Hardy L. The relationship between the use of kinaesthetic imagery and different visual imagery perspectives. J Sports Sci. 2004;22(2):167–77 DOI: http://dx.doi.org/10.1080/02640410310001641449.
  8. Campos A, Campos A, González MÁ. Spanish version of the revised movement image questionnaire (MIQ-r): psychometric properties and validation. Rev Psicol del Deport. Universitat de les Illes Balears, Servei de Publicacions; 2010;19(2):265–75.
  9. Cohen J. Eta-squared and partial eta-squared in fixed factor anova designs. Educ Psychol Meas. Sage PublicationsSage CA: Thousand Oaks, CA; 1973;33(1):107–12 DOI: http://dx.doi.org/10.1177/001316447303300111.
  10. Cuenca-Martínez F, Suso-Martí L, León-Hernández JV, Touche R La. The role of movement representation techniques in the motor learning process: A neurophysiological hypothesis and a narrative review. Brain Sci. MDPI AG; 2020;10(1):27–48 DOI: http://dx.doi.org/10.3390/brainsci10010027.
  11. Cuenca‐Martínez F, Suso‐Martí L, León-Hernández JV, La Touche R. Effects of movement representation techniques on motor learning of thumb-opposition tasks. Sci Rep. 2020;10(1):12267 DOI: http://dx.doi.org/10.1038/s41598-020-67905-7.
  12. Dayan E, Cohen LG. Neuroplasticity Subserving Motor Skill Learning. Neuron. Cell Press; 2011;72(3):443–54 DOI: http://dx.doi.org/10.1016/J.NEURON.2011.10.008.
  13. Decety J. The neurophysiological basis of motor imagery. Behav Brain Res. Elsevier; 1996;77(1–2):45–52 DOI: http://dx.doi.org/10.1016/0166-4328(95)00225-1.
  14. Ehrsson HH, Geyer S, Naito E. Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol. 2003;90(5):3304–16 DOI: http://dx.doi.org/10.1152/jn.01113.2002.
  15. Etnier, J. L., & Landers DM. The influence of procedural variables on the efficacy of mental practice. Sport Psychol. 1996;10(1):48–57.
  16. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91 DOI: http://dx.doi.org/10.3758/BF03193146.
  17. Feltz DL, Landers DM. The Effects of Mental Practice on Motor Skill Learning and Performance: A Meta-analysis. J Sport Psychol. 1983;5(1):25–57 DOI: http://dx.doi.org/10.1123/jsp.5.1.25.
  18. Gatti R, Tettamanti A, Gough PM, Riboldi E, Marinoni L, Buccino G. Action observation versus motor imagery in learning a complex motor task: A short review of literature and a kinematics study. Neurosci Lett. 2013;540:37–42 DOI: http://dx.doi.org/10.1016/j.neulet.2012.11.039.
  19. Guillot A, Collet C, Dittmar A. Relationship Between Visual and Kinesthetic Imagery, Field Dependence-Independence, and Complex Motor Skills. J Psychophysiol. Hogrefe & Huber Publishers ; 2004;18(4):190–8 DOI: http://dx.doi.org/10.1027/0269-8803.18.4.190.
  20. Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J. Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage. 2008;41(4):1471–83 DOI: http://dx.doi.org/10.1016/j.neuroimage.2008.03.042.
  21. Guillot A, Tolleron C, Collet C. Does motor imagery enhance stretching and flexibility? J Sports Sci. 2010;28(3):291–8 DOI: http://dx.doi.org/10.1080/02640410903473828.
  22. Hodges N, Williams AM, Hayes S, Breslin G. What is modelled during observational learning? J Sports Sci. Routledge; 2007;25(5):531–45 DOI: http://dx.doi.org/10.1080/02640410600946860.
  23. Isaac AR, Marks DF. Individual differences in mental imagery experience: developmental changes and specialization. Br J Psychol. 1994;85 ( Pt 4):479–500.
  24. Jeannerod M. The representing brain: Neural correlates of motor intention and imagery. Behav Brain Sci. Cambridge University Press; 1994;17(2):187–202 DOI: http://dx.doi.org/10.1017/S0140525X00034026.
  25. Jones L, Stuth G. The uses of mental imagery in athletics: An overview. Appl Prev Psychol. Cambridge University Press; 1997;6(2):101–15 DOI: http://dx.doi.org/10.1016/S0962-1849(05)80016-2.
  26. Kumar VK. Motor Imagery Training on Muscle Strength and Gait Performance in Ambulant Stroke Subjects-A Randomized Clinical Trial. J Clin DIAGNOSTIC Res. JCDR Research and Publications; 2016; DOI: http://dx.doi.org/10.7860/jcdr/2016/16254.7358.
  27. Lebon F, Collet C, Guillot A. Benefits of Motor Imagery Training on Muscle Strength. J Strength Cond Res. 2010;24(6):1680–7 DOI: http://dx.doi.org/10.1519/JSC.0b013e3181d8e936.
  28. Lee KA, Hicks G, Nino-Murcia G. Validity and reliability of a scale to assess fatigue. Psychiatry Res. 1991;36(3):291–8.
  29. Linder M, Michaelson P, Röijezon U. Laterality judgments in people with low back pain - A cross-sectional observational and test-retest reliability study. Man Ther. Elsevier; 2016;21:128–33 DOI: http://dx.doi.org/10.1016/j.math.2015.07.001.
  30. Malouin F, Jackson PL, Richards CL. Towards the integration of mental practice in rehabilitation programs. A critical review. Vol. 7, Frontiers in Human Neuroscience. Frontiers Media S. A.; 2013. p. 576 DOI: http://dx.doi.org/10.3389/fnhum.2013.00576.
  31. Malouin F, Richards CL, Durand A, Doyon J. Reliability of Mental Chronometry for Assessing Motor Imagery Ability After Stroke. Arch Phys Med Rehabil. 2008;89(2):311–9 DOI: http://dx.doi.org/10.1016/j.apmr.2007.11.006.
  32. Mantilla Toloza SC, Gómez-Conesa A. El Cuestionario Internacional de Actividad Física. Un instrumento adecuado en el seguimiento de la actividad física poblacional. Rev Iberoam Fisioter y Kinesiol. Elsevier; 2007;10(1):48–52 DOI: http://dx.doi.org/10.1016/S1138-6045(07)73665-1.
  33. Moran A, Guillot A, MacIntyre T, Collet C. Re-imagining motor imagery: Building bridges between cognitive neuroscience and sport psychology. Br J Psychol. 2012;103(2):224–47 DOI: http://dx.doi.org/10.1111/j.2044-8295.2011.02068.x.
  34. Mulder T, Zijlstra S, Zijlstra W, Hochstenbach J. The role of motor imagery in learning a totally novel movement. Exp brain Res. 2004;154(2):211–7 DOI: http://dx.doi.org/10.1007/s00221-003-1647-6.
  35. Nordin SM, Cumming J. More than meets the eye: Investigating imagery type, direction, and outcome. Sport Psychol. Human Kinetics Publishers Inc.; 2005;19(1):1–17 DOI: http://dx.doi.org/10.1123/tsp.19.1.1.
  36. Jenny O, Munroe-Chandler KJ. The Effects of Image Speed on the Performance of a Soccer Task. Sport Psychol. Human Kinetics; 2016;22(1):1–17 DOI: http://dx.doi.org/10.1123/tsp.22.1.1.
  37. Paris-Alemany A, La Touche R, Agudo-Carmona D, Fernández-Carnero J, Gadea-Mateos L, Suso-Martí L, Cuenca-Martínez F. Visual motor imagery predominance in professional Spanish dancers. Somatosens Mot Res. 2019;1–10 DOI: http://dx.doi.org/10.1080/08990220.2019.1641480.
  38. Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol. 1995;74(3):1037–45 DOI: http://dx.doi.org/10.1152/jn.1995.74.3.1037.
  39. Rieger M. Motor imagery in typing: effects of typing style and action familiarity. Psychon Bull Rev. 2012;19(1):101–7 DOI: http://dx.doi.org/10.3758/s13423-011-0178-6.
  40. Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–92 DOI: http://dx.doi.org/10.1146/annurev.neuro.27.070203.144230
  41. Robertson EM, Pascual-Leone A, Miall RC. Current concepts in procedural consolidation. Nat Rev Neurosci. 2004;5(7):576–82 DOI: http://dx.doi.org/10.1038/nrn1426.
  42. Roman-Viñas B, Serra-Majem L, Hagströmer M, Ribas-Barba L, Sjöström M, Segura-Cardona R. International Physical Activity Questionnaire: Reliability and validity in a Spanish population. Eur J Sport Sci. 2010;10(5):297–304 DOI: http://dx.doi.org/10.1080/17461390903426667.
  43. Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 Statement : updated guidelines for reporting parallel group randomised trials. Ann Intern Med. 2010;152:726–32.
  44. Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, Ungerleider L, Classen J. Formation of a Motor Memory by Action Observation. J Neurosci. 2005;25(41):9339–46 DOI: http://dx.doi.org/10.1523/JNEUROSCI.2282-05.2005.
  45. Talukdar U, Hazarika SM, Gan JQ. Motor imagery and mental fatigue: inter-relationship and EEG based estimation. J Comput Neurosci. Springer New York LLC; 2019;46(1):55–76 DOI: http://dx.doi.org/10.1007/s10827-018-0701-0.
  46. Taube W, Mouthon M, Leukel C, Hoogewoud HM, Annoni JM, Keller M. Brain activity during observation and motor imagery of different balance tasks: An fMRI study. Cortex. Masson SpA; 2015;64:102–14 DOI: http://dx.doi.org/10.1016/j.cortex.2014.09.022.
  47. Tiffin J, Asher EJ. The Purdue Pegboard: norms and studies of reliability and validity. J Appl Psychol. 1948;32(3):234–47 DOI: http://dx.doi.org/10.1037/h0061266.
  48. La Touche R, Grande-Alonso M, Cuenca-Martínez F, Gónzález-Ferrero L, Suso-Martí L, Paris-Alemany A. Diminished Kinesthetic and Visual Motor Imagery Ability in Adults With Chronic Low Back Pain. PM&R. Elsevier Inc.; 2018;11(3):227–35 DOI: http://dx.doi.org/10.1016/j.pmrj.2018.05.025.
  49. Vogt S. On relations between perceiving, imagining and performing in the learning of cyclical movement sequences. Br J Psychol. Wiley-Blackwell; 1995;86(2):191–216 DOI: http://dx.doi.org/10.1111/j.2044-8295.1995.tb02556.x.
  50. Williams SE, Guillot A, Di Rienzo F, Cumming J. Comparing self-report and mental chronometry measures of motor imagery ability. Eur J Sport Sci. 2015;15(8):703–11 DOI: http://dx.doi.org/10.1080/17461391.2015.1051133.
  51. Willingham DB. A neuropsychological theory of motor skill learning. Psychol Rev. Psychol Rev; 1998;105(3):558–84 DOI: http://dx.doi.org/10.1037/0033-295x.105.3.558.
  52. Wriessnegger SC, Kirchmeyr D, Bauernfeind G, Müller-Putz GR. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study. Brain Cogn. 2017;117:108–16 DOI: http://dx.doi.org/10.1016/j.bandc.2017.06.010.
  53. Zhang H, Xu L, Wang S, Xie B, Guo J, Long Z, Yao L. Behavioral improvements and brain functional alterations by motor imagery training. Brain Res. 2011;1407:38–46 DOI: http://dx.doi.org/10.1016/j.brainres.2011.06.038.