Editorial
17 septiembre 2021

Introduciendo la dimensión motora dentro de la conceptualización de la experiencia del dolor

Roy La Touche
1. Departamento de Fisioterapia, Facultad de Ciencias de la Salud. Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, España. 2. Motion in Brains Research Group, Instituto de Neurociencias y Ciencias del Movimiento (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, España. 3. Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), Madrid, España.
Vol. 3 Núm. 1 (2021): Junio

  Métricas

Resumen

En este planteamiento teórico se propone un diseño y re-conceptualización de la experiencia dolorosa manteniendo el enfoque multidimensional, pero introduciendo una dimensión más, que se denomina “comportamiento motor”.
La dimensión del comportamiento motor incluye todas los procesos y respuestas asociadas a la experiencia dolorosa que pueden manifestarse de forma adaptativa o desadaptativa y que influyen de forma directa sobre el procesamiento y la modulación del dolor y además interactúan de forma circundante con los procesos afectivos-motivacionales, los sensoriales y los cognitivos.

  Cómo citar

1.
La Touche R. Introduciendo la dimensión motora dentro de la conceptualización de la experiencia del dolor. MOVE [Internet]. 17 de septiembre de 2021 [citado 7 de agosto de 2022];3(1):269-77. Disponible en: https://jomts.com/index.php/MOVE/article/view/474
  

  Referencias

Adolph KE, Franchak JM. The development of motor behavior. Wiley Interdiscip Rev Cogn Sci. 2017;8(1–2) DOI: http://dx.doi.org/10.1002/WCS.1430.

Auvray M, Myin E, Spence C. The sensory-discriminative and affective-motivational aspects of pain. Neurosci Biobehav Rev. Pergamon; 2010;34(2):214–23 DOI: http://dx.doi.org/10.1016/J.NEUBIOREV.2008.07.008.

Azqueta-Gavaldon M, Youssef A, Storz C, Lemme J, Schulte-Göcking H, Becerra L, Azad S, Reiners A, Ertl-Wagner B, D B, J U, E K. Implications of the putamen in pain and motor deficits in complex regional pain syndrome. Pain. 2020;161(3):595–608 DOI: http://dx.doi.org/10.1097/J.PAIN.0000000000001745.

Bank P, Peper C, Marinus J, Beek P, van Hilten J. Motor consequences of experimentally induced limb pain: a systematic review. Eur J Pain. 2013;17(2):145–57 DOI: http://dx.doi.org/10.1002/J.1532-2149.2012.00186.X.

Butera KA, Fox EJ, George SZ. Toward a Transformed Understanding: From Pain and Movement to Pain With Movement. Phys Ther. 2016;96(10):1503 DOI: http://dx.doi.org/10.2522/PTJ.20160211.

Cárdenas Fernández R. La neuromatrix y su importancia en la neurobiologia del dolor. Invest Clin. 2015;56(2):109–10.

Coombes S, Misra G. Pain and motor processing in the human cerebellum. Pain. 2016;157(1):117–27 DOI: http://dx.doi.org/10.1097/J.PAIN.0000000000000337.

Van Damme S, Kindermans H. A self-regulation perspective on avoidance and persistence behavior in chronic pain: new theories, new challenges? Clin J Pain. 2015;31(2):115–22 DOI: http://dx.doi.org/10.1097/AJP.0000000000000096.

Dum RP, Levinthal DJ, Strick PL. The Spinothalamic System Targets Motor and Sensory Areas in the Cerebral Cortex of Monkeys. J Neurosci. 2009;29(45):14223 DOI: http://dx.doi.org/10.1523/JNEUROSCI.3398-09.2009.

Gelnar P, Krauss B, Sheehe P, Szeverenyi N, Apkarian A. A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage. 1999;10(4):460–82 DOI: http://dx.doi.org/10.1006/NIMG.1999.0482.

George SZ, Calley D, Valencia C, Beneciuk JM. Clinical Investigation of Pain-related Fear and Pain Catastrophizing for Patients With Low Back Pain. Clin J Pain. 2011;27(2):108–15 DOI: http://dx.doi.org/10.1097/AJP.0b013e3181f21414.

Graven-Nielsen T, SVENSSON P, ARENDT-NIELSEN L. Effect of Muscle Pain on Motor Control: A Human Experimental Approach. http://dx.doi.org/101080/140381900443418 [Internet]. 2009 [cited 2021 Sep 8];2(1):26–38

Hodges P, Smeets S. Interaction between pain, movement, and physical activity: short-term benefits, long-term consequences, and targets for treatment. Clin J Pain. 2015;31(2):97–107 DOI: http://dx.doi.org/10.1097/AJP.0000000000000098.

Hodges PW, Tucker K. Moving differently in pain: A new theory to explain the adaptation to pain. Pain. 2011;152(Supplement):S90–8 DOI: http://dx.doi.org/10.1016/j.pain.2010.10.020.

Holmes S, Kim A, Borsook D. The brain and behavioral correlates of motor-related analgesia (MRA). Neurobiol Dis. 2021;148:105158 DOI: http://dx.doi.org/10.1016/J.NBD.2020.105158.

IASP. Terminology | International Association for the Study of Pain. 2021.

Lambin D, Thibault P, Simmonds M, Lariviere C, Sullivan M. Repetition-induced activity-related summation of pain in patients with fibromyalgia. Pain. 2011;152(6):1424–30 DOI: http://dx.doi.org/10.1016/J.PAIN.2011.02.030.

Maihöfner C, Baron R, DeCol R, Binder A, Birklein F, Deuschl G, Handwerker HO, Schattschneider J. The motor system shows adaptive changes in complex regional pain syndrome. Brain. 2007;130(10):2671–87 DOI: http://dx.doi.org/10.1093/brain/awm131.

Melzack R. From the gate to the neuromatrix. Pain. 1999;Suppl 6:S121-6.

Melzack R, Torgerson W. On the language of pain. Anesthesiology. 1971;34(1):50–9 DOI: http://dx.doi.org/10.1097/00000542-197101000-00017.

Merkle S, Sluka K, Frey-Law. L. The interaction between pain and movement. J Hand Ther. 2020;33(1):60–6 DOI: http://dx.doi.org/10.1016/J.JHT.2018.05.001.

Misra G, Coombes S. Neuroimaging Evidence of Motor Control and Pain Processing in the Human Midcingulate Cortex. Cereb Cortex. 2015;25(7):1906–19 DOI: http://dx.doi.org/10.1093/CERCOR/BHU001.

Moseley G, Vlaeyen J. Beyond nociception: the imprecision hypothesis of chronic pain. Pain. 2015;156(1):35–8 DOI: http://dx.doi.org/10.1016/J.PAIN.0000000000000014.

Nijs J, Daenen L, Cras P, Struyf F, Roussel N, Oostendorp RAB. Nociception affects motor output: A review on sensory-motor interaction with focus on clinical implications. Clin J Pain [Internet]. Clin J Pain; 2012 [cited 2020 Nov 2];28(2):175–81 DOI: http://dx.doi.org/10.1097/AJP.0b013e318225daf3.

Paris T, Misra G, Archer D, Coombes S. Effects of a force production task and a working memory task on pain perception. J pain. 2013;14(11):1492–501 DOI: http://dx.doi.org/10.1016/J.JPAIN.2013.07.012.

Perini I, Bergstrand S, Morrison R. Where pain meets action in the human brain. J Neurosci. 2013;33(40):15930–9 DOI: http://dx.doi.org/10.1523/JNEUROSCI.3135-12.2013.

Peyron R, Laurent B, García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin. 2000;30(5):263–88 DOI: http://dx.doi.org/10.1016/S0987-7053(00)00227-6.

Picavet H, Vlaeyen J, Schouten J. Pain catastrophizing and kinesiophobia: predictors of chronic low back pain. Am J Epidemiol. 2002;156(11):1028–34 DOI: http://dx.doi.org/10.1093/AJE/KWF136.

Piché M, Arsenault M, Rainville P. Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation. Pain. 2010;149(3):453–62 DOI: http://dx.doi.org/10.1016/J.PAIN.2010.01.005.

Postorino M, May ES, Nickel MM, Tiemann L, Ploner M. Sensory Processing: Influence of pain on motor preparation in the human brain. J Neurophysiol. 2017;118(4):2267 DOI: http://dx.doi.org/10.1152/JN.00489.2017.

Price D. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288(5472):1769–72 DOI: http://dx.doi.org/10.1126/SCIENCE.288.5472.1769.

Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, Keefe FJ, Mogil JS, Ringkamp M, Sluka KA, Song XJ, Stevens B, Sullivan MD, Tutelman PR, Ushida T, Vader K. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain. 2020;161(9):1976–82 DOI: http://dx.doi.org/10.1097/J.PAIN.0000000000001939.

Salomons T V., Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman B V., Tenenbaum HC, Davis KD. Perceived helplessness is associated with individual differences in the central motor output system. Eur J Neurosci [Internet]. Eur J Neurosci; 2012 [cited 2020 Nov 2];35(9):1481–7 DOI: http://dx.doi.org/10.1111/j.1460-9568.2012.08048.x.

Simmonds MJ, Moseley GL, Vlaeyen JWS. Pain, mind, and movement: an expanded, updated, and integrated conceptualization. Clin J Pain. 2008;24(4):279–80 DOI: http://dx.doi.org/10.1097/AJP.0b013e31815b607e.

Sullivan MJL, Thibault P, Andrikonyte J, Butler H, Catchlove R, Larivière C. Psychological influences on repetition-induced summation of activity-related pain in patients with chronic low back pain. Pain. 2009;141(1–2):70–8 DOI: http://dx.doi.org/10.1016/J.PAIN.2008.10.017.

Tiemann L, Hohn VD, Ta Dinh S, May ES, Nickel MM, Gross J, Ploner M. Distinct patterns of brain activity mediate perceptual and motor and autonomic responses to noxious stimuli. Nat Commun. 2018;9(1) DOI: http://dx.doi.org/10.1038/S41467-018-06875-X.

La Touche R, Grande-Alonso M, Arnés-Prieto P, Paris-Alemany A. How does self-efficacy influence pain perception, postural stability and range of motion in individuals with chronic low back pain? Pain Physician. 2019;22(1):E1–13.

Turner J, Arendt-Nielsen L. Four decades later: what’s new, what’s not in our understanding of pain. Pain. 2020;161(9):1943–4 DOI: http://dx.doi.org/10.1097/J.PAIN.0000000000001991.

Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E. An fMRI-Based Neurologic Signature of Physical Pain. N Engl J Med. 2013;368(15):1388 DOI: http://dx.doi.org/10.1056/NEJMOA1204471.

Wei-Ju C, Neil E O, Beckenkamp PR, Alhassani G, Liston MB, Schabrun SM. Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis. J Pain. 2018;19(4):341–59 DOI: http://dx.doi.org/10.1016/J.JPAIN.2017.10.007.

Yeater T, Clark D, Hoyos L, Valdes-Hernandez P, Peraza J, Allen K, Cruz-Almeida Y. Chronic Pain is Associated With Reduced Sympathetic Nervous System Reactivity During Simple and Complex Walking Tasks: Potential Cerebral Mechanisms. Chronic Stress (Thousand Oaks, Calif). 2021;5 DOI: http://dx.doi.org/10.1177/24705470211030273.